Pediatric Burn Care
Objectives

1. Review emergent needs for burn patients
2. Identify transport needs
3. Review burn patient case studies
Determinants of Burn Depth

Temperature of Source
the higher the temperature the deeper the burn in less time

Time of Exposure
the lower the temperature but longer exposure the deeper the burn
Scald burns are the most common injury in children.
Clothes retain heat.
Grease and hot oil almost always cause a full thickness injury.

A thermal burn injuries requires 1 minute of cooling exposure to reach a level at which no further burning occurs.
Skin Anatomy
Superficial (first degree)

- Do Not count into the Total Burn Surface Area (TBSA)
- Involves only the outermost layer of the epidermis
- Appears pink and painful
Superficial Partial Thickness (second degree)

- Involves the upper 1/3 of the dermis
- Blisters are common
- Red, wet, painful and blanching
- Heals in 7-14 days
- Minimal to no scarring
Deep Partial Thickness (second degree)

- Deep dermal involvement
- Blisters may be present
- Red to pink, slow or absent, blanching
- Healing takes around 21 days
- Prone to scarring
- Marginal blood supply
Full Thickness (third degree)

- Loss of all dermal elements
- Dry, leathery, firm, colors vary
- No blanching, insensate
- Edema may be massive
Immediate Care

- Trauma will always take precedence over burn
 - Burns do not bleed
- Stop the burning process
 - Ice is NOT recommended
 - Remove clothing and diapers
 - Remove jewelry
- Avoid Hypothermia
Airway

- Airway Control
 - Chin lift
 - Jaw thrust
 - Insert oral pharyngeal airway
 - Assess need for ET intubation

- Maintain in-line cervical immobilization in patients at risk
Breathing & Ventilation

- Examine
- Assess rate and depth
- Administer high flow O2
- Monitor chest wall excursion in presence of circumferential torso burns
Inhalation Injury

- Burn injury occurred in an enclosed space
- Singed nasal hair
- Carbonaceous sputum
- Brassy or sooty cough
- Hoarseness
- Stridor
Circulation

- Monitor Vital Signs
- Establish IV access
 - Where?
 - What size?
 - How many?
 - Securement?
- Assess circulatory status of burned extremities
Disability, Neurologic Deficit

Assess using AVPU
A- Alert
V- Responds to verbal stimuli
P- Responds to painful stimuli
U- Unresponsive

If patient is not alert, consider:
Associated Injuries
CO poisoning
Substance abuse
Hypoxia
Pre-existing medical conditions
Exposure/Environmental Control

- Remove all clothing and jewelry
- Remove contact lenses
- Maintain patient temperature
 - Warm room
 - Keep covered with dry sheets/blankets
 - Warm IV fluids
Total Body Surface Area (% TBSA) Affected by Age

Lund-Browder

Anterior

Posterior

<table>
<thead>
<tr>
<th>Body Part</th>
<th>0 yr</th>
<th>1 yr</th>
<th>5 yr</th>
<th>10 yr</th>
<th>15 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = 1/2 of head</td>
<td>9.5%</td>
<td>8.5%</td>
<td>6.5%</td>
<td>5.5%</td>
<td>4.5%</td>
</tr>
<tr>
<td>b = 1/2 of 1 thigh</td>
<td>2.75%</td>
<td>3.25%</td>
<td>4.0%</td>
<td>4.5%</td>
<td>4.5%</td>
</tr>
<tr>
<td>c = 1/2 of 1 lower leg</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.75%</td>
<td>3.0%</td>
<td>3.25%</td>
</tr>
</tbody>
</table>
Practice!
Got Fluid?

Burns greater than 20% TBSA

What fluids should you give and how much?

5 years and younger: LR @ 125mL/hr
2 years and younger use D5LR instead of LR
6-14 years: LR @ 250mL/hr
>14 years: LR @ 500mL/hr
Why LR?

- Mimics intravascular fluid
- Treats hypovolemia
- Replaces intracellular sodium deficits
- Saline can contribute to ongoing acidosis
Increased Capillary Permeability

Water “leaks” from intravascular space to interstitial space resulting in edema in burn tissue and throughout the body.

This permeability increases and large molecules can pass through the capillary pores easily. These large molecules include protein.
Chest Escharotomy
Upper Extremity Escharotomy
Non-Accidental Trauma
Non-accidental Trauma (NAT)

- 25% of patients admitted to CHCO are suspected NAT
- Mean age of NAT burn wound = 2.5 yrs of age
- Scald burns are most common inflicted burn - overlooked as accidental at times
- History, psychosocial risk factor assessment and pattern of injury are critically important
Non-accidental trauma

- Assess for:
 - Lines of demarcation
 - Sparing

- Ask yourself:
 - Does the pattern of the burn match the story?
 - Can the child developmentally perform the task?
 - Does the scene support the injury?
 - What was the situation surrounding the injury?

- Report
- Photographs
Clear Lines of Demarcation
Special Considerations
Chemical Burn

- Protect yourself
- Brush off any powder and remove clothing
- Irrigate with copious amounts of water for at least 20 minutes
Electrical Injury

- Confirm the scene is safe
- Findings suggesting electrical injury
 - Loss of consciousness
 - Paralysis or mummified extremity
 - Loss of peripheral pulse
 - Contact injury
 - Myoglobulinuria
- Household electrical injury
 - EKG
 - Local wound care
What do you do?

- Keep the patient warm
- NO WET dressings- dry blankets
- Pain medication
- Creams/Ointments are not necessary
- IV fluid per ABA guidelines
Questions?
The Safe Transport of Children in Ambulances

Susan Goldenstein, MNM, EMT, CPSTI
Jason Kotas, NREMT, CPST
We have no relevant financial disclosures
Objectives

1. Discuss Ambulance Transportation Issues and Considerations
2. Crash Dynamics/Rear-facing
3. Review Child Safety Seats (CSS) Basics
4. Child Safety Seats: Considerations for Ambulance use
5. Discuss Ambulance-Specific Child Restraints
It Ain't Sexy But They Work…

- March 9th in Spanish Fork River, UT
- Mom found dead / 18 mo
- Lily found dangling from car seat for approx 14 hrs
- Lily recovering well and discharged
Ambulance Crash Characteristics

Approximately 6.2 million people transported via ambulance each year in the U.S.

Approx. 10,000 ambulance crashes result in injury or death annually

Up to 1,000 ambulance crashes a year involve pediatric patients

Ambulance Crash Characteristics
NIOSH analysis of field crash data

Of 300 fatal crashes, 79% considered frontal impacts

Ambulance Crash Characteristics

- Most serious/fatal injuries occur:
 - in rear compartment
 - to unrestrained or improperly restrained occupants
 - at intersections
 - during emergency use

- 82% of fatally injured rear occupants were unrestrained

Ambulance Crash Characteristics

• EMTs and Paramedics have a rate of injury that is three times the national average for all occupations.

• Cause of death 86% transportation related

It’s Personal

- 2006 along I-76 in northeast Colorado
- CCT tx pregnant pt w/ RN from NE to CO
- Rear occupant pt (ejected) & RN both pronounced dead on scene
- EMT driver cited
It’s An Extension of Clinical Care
Crash Dynamics
Crash Dynamics

Explaining Crash Forces

Weight \times Speed = Restraining Force
Why Children Should Travel Rear-Facing

- Physical Development
 - Babies have big heads
 - Bones, tendons, and muscles are not fully developed
Why Children Should Travel Rear-Facing, cont’d
It Was a Beautiful Halloween Sunday Morning
Pop Case Review

• Sunday morning, rural area, high speed MVA in front of church.
• ~9 y/o boy, restrained front passenger SUV
 • Awake, mumbling, moaning, following simple commands, pupils equal and eyes tracking, breathing, skin warm/dry, cap refill < 3 seconds, left open femur fracture

• Sick/Not sick?
Pop Case Review

• **Initial Documentation**
 • History (~9 year boy, estimated 25kg – how?)
 • Airway - Patent
 • Breathing - Unlabored and equal breath sounds, 10L oxygen by NRBM
 • Circulation - Warm, pink, dry, CR <3 seconds, + bleeding, 18G IV with NS infusing
 • Disability/Da Brain/Dextrose - Awake, PERRL, GCS 13, not moving bilateral lower extremities, D-stick 121
 • Expose – Open left femur fracture, two small bruises noted on abdomen (upper quadrants); blankets for warmth
 • **VS:** HR 60, RR 22, 75/P, 97% spO2
Pop Case Review
Clinical Features / Neurogenic Shock

• Acute Spinal Cord Injury (mechanism, BLE paralysis)
• Warm, dry skin
• Hypotension
• Bradycardia
• Hypothermia (later)
Pop Case Review

- Arrive in 58 min to Trauma Room 1
- Trauma Team activated prior to arrival
- 500mL infused
- Respiratory effort waning, pale
- HR 40’s no distal pulses
- Cardiovascular collapse → CPR, intubation, IV
- Epi, Mannitol,
- Massive Transfusion Protocol started:
 - 40mL/kg NS and 2 units blood via rapid infuser
- FAST Ultrasound = + fluid in abdomen
Pop Case Review

• PICU
• Mid-cervical spinal cord injury with evidence of disruption at C7-T2 and epidural hemorrhage, rib fractures, femur fracture, posterior fusion from C5-T6
Pop Case Review
Child Safety Seats
Types of Child Safety Seats

- Infant Only
- Convertible
- Forward-Facing Only
- Special Needs
- Combination
- Booster Seat
Convertible Child Safety Seat

Example of convertible seat installed rear facing with recline feature

Example of convertible seat installed forward-facing

Source: Automotive Safety Program
Harness Fit

- Harness should fit snugly. Your fingers should slide off the harness when you pinch the webbing at the shoulder.
- Position harness retainer clip arm-pit level
Research of Convertible Child Restraints on an Ambulance Cot
Background

- Research conducted in 1990 and 2000 by the Automotive Safety Program at Riley Hospital for Children with the University of Michigan Transportation Research Institute (UMTRI).

1990 Test: Convertible CSS

- Test date: January 30, 1990.
- 3 year old test dummy.
- Convertible seat facing the rear of the ambulance on Ferno 30 ambulance cot with Ferno 175 ambulance cot fastening system.
- The convertible seat was reclined with the harness through the middle slots. The convertible CSS was installed using a cot belt through each (rear facing and forward facing) belt path.
- Frontal impact at 48km/h (30 mph), 20 G with cot backrest fully reclined and side rails up.
- This test dummy was not instrumented. Failure of the fastener system appeared to be imminent at the conclusion of the test. If safety lanyards had not been used, it is suspected that the fastener system would have failed.
1990 Convertible Test

https://youtu.be/tX6WxUhxKuk
1990 Isolette Test (Has Not Been Repeated)

https://youtu.be/H9mrSYQlhak
2000
Test Set-Up: Convertible CSS

- Test date: July 11, 2000
- Convertible CSS meeting FMVSS 213
- 3 year old, 15 kg test dummy weighted to 18kg
- CSS facing the rear of the ambulance on Ferno Mobile Transporter 35-AST with sheet metal back on Ferno Stat Trac 185 cot fastening system
- CSS reclined, harness through middle slots; cot belts through rear-facing and forward-facing belt paths
- Frontal impact at 48km/h (30 mph), 23 G, simulated ambulance floor on impact sled; cot backrest fully up with side rails down
2000 Convertible CSS Crash Test

https://youtu.be/ZGp21LJEMRw
Results: Convertible CSS

- Good restraint performance during impact and rebound
- Chest G resultant was 43G (compliant with 213 standard)
- Head Injury Criterion was 501 (compliant with 213 standard)
- Head target was well contained
Recommendations: Convertible CSS

For children 5-40 pounds:

- Install with rear-facing & forward-facing belt paths
- Choose seat with 5-point internal harness
- Position seat facing rear of ambulance
- Elevate cot backrest to fully upright position
- Adjust restraint recline mechanism to fit snugly against cot backrest

Convertible CSS: Cot Belt Through FF Belt Path
Convertible CSS: Cot Belt Through RF Belt Path
Convertible Car Seat
Child Safety Seats: Considerations for Ambulance Use

Uninjured children should ride in a passenger vehicle in a child restraint appropriate for their height, weight, and age whenever possible.
These are safer than…

This

CSS Use in Front Passenger Seat of Ambulance

- Infant-only seat could be installed:
 - rear-facing if no active airbag
- Convertible seat could be installed:
 - rear-facing or forward-facing if no active airbag
- Forward facing or booster is fine
 (slide seat all the way back)

Child Safety Seats: Considerations for Use in Rear-Compartment

NEVER install a child restraint side-facing on a bench seat or captain’s chair

Rear-Facing CSS on Rear-Facing Attendant Seats

CSS Use on Ambulance Cot

CANNOT install:

- Infant-only, forward-facing only, combination, or specialty CSS

 These seats have only one belt bath and cannot be adequately secured to the cot

- Belt-Positioning Booster

 Requires use of vehicle lap/shoulder belt

CSS Use on Ambulance Cot

CAN Install:
• Convertible CSS
• Two separate belt paths allow for installation on a cot
• Crash test results and specific procedures for use on the ambulance cot for children under 40 pounds are discussed in NHTSA Best Practice Recommendations

Contraindications: Convertible CSS on Cot

Not appropriate if:

• Child acutely ill or unable to maintain thermoregulatory stable
• Child’s injuries cannot be treated in a semi-reclined position
• Child may have a spinal cord injury
• Child requires intubation
• Child does not meet or exceeds wt./ht. limits of CSS
Harness Systems

- Adult cot-mounted harness systems may not provide adequate restraint for pediatric patients in the event of a crash
- Design of harness systems that provide adequate occupant protection remains an area of future research and development
Put Your Parent Hat On…
The sampling of products is not intended to be all inclusive or imply endorsement or crashworthiness of products.

We have no financial disclosures; however, we would love some.
Child Restraints Designed for Ambulance Use

2 Types:
- Cot Mounted Child Restraints
- Integrated Child Restraints Located Inside Ambulance Seats
Safe Guard Transport by IMMI

- Cot-mounted restraint for patients over 1 year of age from 22 to 100 lbs
- Restraint weighs 22 pounds
- 5-point harness system with one-handed adjustment for harness height and tightness
- Children 22-40 pounds can use with cot back angle at 70 and 45 degrees
- Children 40-100 pounds can use with cot back angle at 70 degrees and completely flat
- Not a Spine Board
The Rescu-Air: Air Filled Child Transport Seat

www.epandr.com
1-800-322-5725

- For children 20-40 pounds and less than 40” tall
- Five-point restraint system with pelvic adjustment
- 2-level adjustable shoulder harness
- Must purchase “cot harness system” separately to use on ambulance cot
- Inflates/deflates with included 12v DC pump in 60 seconds
Neo-Mate
7-14 lbs.
$325

Pedi-Mate
10-40 lbs.
$275

Pedi-Mate Plus
10-100 lbs.
$350

Ferno
1-877-733-0911
www.ferno.com
EVS 1880 Hi-Bac Seat by E.V.S. Ltd.

- Designed for uninjured children who must be transported in the ambulance with the patient
- Accommodates children 20-50 pounds
- 5-point harness, folds down from seat back
- Child restraint cannot be used side-facing
- Can be equipped with lap/shoulder belt for staff use
Guardian Safety Seat by Serenity Safety Products

1-800-536-0676
www.SerenitySafetyProducts.com

- 3 in 1 attendant seat with built-in infant only seat, toddler restraint, and 4-point restraint for attendant
THANK YOU

Jason Kotas, NREMT CPST
jason.kotas@childrenscolorado.org
303-724-2593

Susan Goldenstein, MNM EMT CPSTI
susan.goldenstein@childrenscolorado.org
720-777-4807